\(\int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx\) [11]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 160 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {1}{8} a^2 (7 A+6 B) x+\frac {a^2 (10 A+9 B) \sin (c+d x)}{5 d}+\frac {a^2 (7 A+6 B) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 (5 A+6 B) \cos ^3(c+d x) \sin (c+d x)}{20 d}+\frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}-\frac {a^2 (10 A+9 B) \sin ^3(c+d x)}{15 d} \]

[Out]

1/8*a^2*(7*A+6*B)*x+1/5*a^2*(10*A+9*B)*sin(d*x+c)/d+1/8*a^2*(7*A+6*B)*cos(d*x+c)*sin(d*x+c)/d+1/20*a^2*(5*A+6*
B)*cos(d*x+c)^3*sin(d*x+c)/d+1/5*B*cos(d*x+c)^3*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d-1/15*a^2*(10*A+9*B)*sin(d*x+
c)^3/d

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3055, 3047, 3102, 2827, 2715, 8, 2713} \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=-\frac {a^2 (10 A+9 B) \sin ^3(c+d x)}{15 d}+\frac {a^2 (10 A+9 B) \sin (c+d x)}{5 d}+\frac {a^2 (5 A+6 B) \sin (c+d x) \cos ^3(c+d x)}{20 d}+\frac {a^2 (7 A+6 B) \sin (c+d x) \cos (c+d x)}{8 d}+\frac {1}{8} a^2 x (7 A+6 B)+\frac {B \sin (c+d x) \cos ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{5 d} \]

[In]

Int[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]),x]

[Out]

(a^2*(7*A + 6*B)*x)/8 + (a^2*(10*A + 9*B)*Sin[c + d*x])/(5*d) + (a^2*(7*A + 6*B)*Cos[c + d*x]*Sin[c + d*x])/(8
*d) + (a^2*(5*A + 6*B)*Cos[c + d*x]^3*Sin[c + d*x])/(20*d) + (B*Cos[c + d*x]^3*(a^2 + a^2*Cos[c + d*x])*Sin[c
+ d*x])/(5*d) - (a^2*(10*A + 9*B)*Sin[c + d*x]^3)/(15*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{5} \int \cos ^2(c+d x) (a+a \cos (c+d x)) (a (5 A+3 B)+a (5 A+6 B) \cos (c+d x)) \, dx \\ & = \frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{5} \int \cos ^2(c+d x) \left (a^2 (5 A+3 B)+\left (a^2 (5 A+3 B)+a^2 (5 A+6 B)\right ) \cos (c+d x)+a^2 (5 A+6 B) \cos ^2(c+d x)\right ) \, dx \\ & = \frac {a^2 (5 A+6 B) \cos ^3(c+d x) \sin (c+d x)}{20 d}+\frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{20} \int \cos ^2(c+d x) \left (5 a^2 (7 A+6 B)+4 a^2 (10 A+9 B) \cos (c+d x)\right ) \, dx \\ & = \frac {a^2 (5 A+6 B) \cos ^3(c+d x) \sin (c+d x)}{20 d}+\frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{4} \left (a^2 (7 A+6 B)\right ) \int \cos ^2(c+d x) \, dx+\frac {1}{5} \left (a^2 (10 A+9 B)\right ) \int \cos ^3(c+d x) \, dx \\ & = \frac {a^2 (7 A+6 B) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 (5 A+6 B) \cos ^3(c+d x) \sin (c+d x)}{20 d}+\frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{8} \left (a^2 (7 A+6 B)\right ) \int 1 \, dx-\frac {\left (a^2 (10 A+9 B)\right ) \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{5 d} \\ & = \frac {1}{8} a^2 (7 A+6 B) x+\frac {a^2 (10 A+9 B) \sin (c+d x)}{5 d}+\frac {a^2 (7 A+6 B) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 (5 A+6 B) \cos ^3(c+d x) \sin (c+d x)}{20 d}+\frac {B \cos ^3(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}-\frac {a^2 (10 A+9 B) \sin ^3(c+d x)}{15 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.68 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {a^2 (360 B c+420 A d x+360 B d x+60 (12 A+11 B) \sin (c+d x)+240 (A+B) \sin (2 (c+d x))+80 A \sin (3 (c+d x))+90 B \sin (3 (c+d x))+15 A \sin (4 (c+d x))+30 B \sin (4 (c+d x))+6 B \sin (5 (c+d x)))}{480 d} \]

[In]

Integrate[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]),x]

[Out]

(a^2*(360*B*c + 420*A*d*x + 360*B*d*x + 60*(12*A + 11*B)*Sin[c + d*x] + 240*(A + B)*Sin[2*(c + d*x)] + 80*A*Si
n[3*(c + d*x)] + 90*B*Sin[3*(c + d*x)] + 15*A*Sin[4*(c + d*x)] + 30*B*Sin[4*(c + d*x)] + 6*B*Sin[5*(c + d*x)])
)/(480*d)

Maple [A] (verified)

Time = 3.52 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.58

method result size
parallelrisch \(\frac {\left (16 \left (A +B \right ) \sin \left (2 d x +2 c \right )+2 \left (\frac {8 A}{3}+3 B \right ) \sin \left (3 d x +3 c \right )+\left (A +2 B \right ) \sin \left (4 d x +4 c \right )+\frac {2 B \sin \left (5 d x +5 c \right )}{5}+4 \left (12 A +11 B \right ) \sin \left (d x +c \right )+28 \left (A +\frac {6 B}{7}\right ) x d \right ) a^{2}}{32 d}\) \(93\)
parts \(\frac {\left (A \,a^{2}+2 B \,a^{2}\right ) \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}+\frac {\left (2 A \,a^{2}+B \,a^{2}\right ) \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3 d}+\frac {A \,a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {B \,a^{2} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5 d}\) \(149\)
risch \(\frac {7 a^{2} x A}{8}+\frac {3 a^{2} B x}{4}+\frac {3 \sin \left (d x +c \right ) A \,a^{2}}{2 d}+\frac {11 \sin \left (d x +c \right ) B \,a^{2}}{8 d}+\frac {\sin \left (5 d x +5 c \right ) B \,a^{2}}{80 d}+\frac {\sin \left (4 d x +4 c \right ) A \,a^{2}}{32 d}+\frac {\sin \left (4 d x +4 c \right ) B \,a^{2}}{16 d}+\frac {\sin \left (3 d x +3 c \right ) A \,a^{2}}{6 d}+\frac {3 \sin \left (3 d x +3 c \right ) B \,a^{2}}{16 d}+\frac {\sin \left (2 d x +2 c \right ) A \,a^{2}}{2 d}+\frac {\sin \left (2 d x +2 c \right ) B \,a^{2}}{2 d}\) \(172\)
derivativedivides \(\frac {A \,a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {B \,a^{2} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+\frac {2 A \,a^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+2 B \,a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+A \,a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+\frac {B \,a^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}}{d}\) \(186\)
default \(\frac {A \,a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {B \,a^{2} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+\frac {2 A \,a^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+2 B \,a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+A \,a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+\frac {B \,a^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}}{d}\) \(186\)
norman \(\frac {\frac {a^{2} \left (7 A +6 B \right ) x}{8}+\frac {7 a^{2} \left (7 A +6 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}+\frac {a^{2} \left (7 A +6 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {5 a^{2} \left (7 A +6 B \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {5 a^{2} \left (7 A +6 B \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {5 a^{2} \left (7 A +6 B \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {5 a^{2} \left (7 A +6 B \right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {a^{2} \left (7 A +6 B \right ) x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {a^{2} \left (25 A +26 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {8 a^{2} \left (25 A +27 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d}+\frac {a^{2} \left (79 A +54 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5}}\) \(279\)

[In]

int(cos(d*x+c)^2*(a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/32*(16*(A+B)*sin(2*d*x+2*c)+2*(8/3*A+3*B)*sin(3*d*x+3*c)+(A+2*B)*sin(4*d*x+4*c)+2/5*B*sin(5*d*x+5*c)+4*(12*A
+11*B)*sin(d*x+c)+28*(A+6/7*B)*x*d)*a^2/d

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.69 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {15 \, {\left (7 \, A + 6 \, B\right )} a^{2} d x + {\left (24 \, B a^{2} \cos \left (d x + c\right )^{4} + 30 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + 8 \, {\left (10 \, A + 9 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 15 \, {\left (7 \, A + 6 \, B\right )} a^{2} \cos \left (d x + c\right ) + 16 \, {\left (10 \, A + 9 \, B\right )} a^{2}\right )} \sin \left (d x + c\right )}{120 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/120*(15*(7*A + 6*B)*a^2*d*x + (24*B*a^2*cos(d*x + c)^4 + 30*(A + 2*B)*a^2*cos(d*x + c)^3 + 8*(10*A + 9*B)*a^
2*cos(d*x + c)^2 + 15*(7*A + 6*B)*a^2*cos(d*x + c) + 16*(10*A + 9*B)*a^2)*sin(d*x + c))/d

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 459 vs. \(2 (144) = 288\).

Time = 0.30 (sec) , antiderivative size = 459, normalized size of antiderivative = 2.87 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\begin {cases} \frac {3 A a^{2} x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 A a^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {A a^{2} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {3 A a^{2} x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {A a^{2} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {3 A a^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} + \frac {4 A a^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {5 A a^{2} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac {2 A a^{2} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {A a^{2} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {3 B a^{2} x \sin ^{4}{\left (c + d x \right )}}{4} + \frac {3 B a^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2} + \frac {3 B a^{2} x \cos ^{4}{\left (c + d x \right )}}{4} + \frac {8 B a^{2} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {4 B a^{2} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {3 B a^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {2 B a^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {B a^{2} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {5 B a^{2} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{4 d} + \frac {B a^{2} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (A + B \cos {\left (c \right )}\right ) \left (a \cos {\left (c \right )} + a\right )^{2} \cos ^{2}{\left (c \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**2*(a+a*cos(d*x+c))**2*(A+B*cos(d*x+c)),x)

[Out]

Piecewise((3*A*a**2*x*sin(c + d*x)**4/8 + 3*A*a**2*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + A*a**2*x*sin(c + d*x)
**2/2 + 3*A*a**2*x*cos(c + d*x)**4/8 + A*a**2*x*cos(c + d*x)**2/2 + 3*A*a**2*sin(c + d*x)**3*cos(c + d*x)/(8*d
) + 4*A*a**2*sin(c + d*x)**3/(3*d) + 5*A*a**2*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 2*A*a**2*sin(c + d*x)*cos(c
 + d*x)**2/d + A*a**2*sin(c + d*x)*cos(c + d*x)/(2*d) + 3*B*a**2*x*sin(c + d*x)**4/4 + 3*B*a**2*x*sin(c + d*x)
**2*cos(c + d*x)**2/2 + 3*B*a**2*x*cos(c + d*x)**4/4 + 8*B*a**2*sin(c + d*x)**5/(15*d) + 4*B*a**2*sin(c + d*x)
**3*cos(c + d*x)**2/(3*d) + 3*B*a**2*sin(c + d*x)**3*cos(c + d*x)/(4*d) + 2*B*a**2*sin(c + d*x)**3/(3*d) + B*a
**2*sin(c + d*x)*cos(c + d*x)**4/d + 5*B*a**2*sin(c + d*x)*cos(c + d*x)**3/(4*d) + B*a**2*sin(c + d*x)*cos(c +
 d*x)**2/d, Ne(d, 0)), (x*(A + B*cos(c))*(a*cos(c) + a)**2*cos(c)**2, True))

Maxima [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.11 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=-\frac {320 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{2} - 15 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{2} - 120 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{2} - 32 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} B a^{2} + 160 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a^{2} - 30 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{2}}{480 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

-1/480*(320*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^2 - 15*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c
))*A*a^2 - 120*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^2 - 32*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x
+ c))*B*a^2 + 160*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*a^2 - 30*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x
 + 2*c))*B*a^2)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.86 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {B a^{2} \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {1}{8} \, {\left (7 \, A a^{2} + 6 \, B a^{2}\right )} x + \frac {{\left (A a^{2} + 2 \, B a^{2}\right )} \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac {{\left (8 \, A a^{2} + 9 \, B a^{2}\right )} \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {{\left (A a^{2} + B a^{2}\right )} \sin \left (2 \, d x + 2 \, c\right )}{2 \, d} + \frac {{\left (12 \, A a^{2} + 11 \, B a^{2}\right )} \sin \left (d x + c\right )}{8 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

1/80*B*a^2*sin(5*d*x + 5*c)/d + 1/8*(7*A*a^2 + 6*B*a^2)*x + 1/32*(A*a^2 + 2*B*a^2)*sin(4*d*x + 4*c)/d + 1/48*(
8*A*a^2 + 9*B*a^2)*sin(3*d*x + 3*c)/d + 1/2*(A*a^2 + B*a^2)*sin(2*d*x + 2*c)/d + 1/8*(12*A*a^2 + 11*B*a^2)*sin
(d*x + c)/d

Mupad [B] (verification not implemented)

Time = 0.97 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.73 \[ \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {\left (\frac {7\,A\,a^2}{4}+\frac {3\,B\,a^2}{2}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (\frac {49\,A\,a^2}{6}+7\,B\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {40\,A\,a^2}{3}+\frac {72\,B\,a^2}{5}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {79\,A\,a^2}{6}+9\,B\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {25\,A\,a^2}{4}+\frac {13\,B\,a^2}{2}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}-\frac {a^2\,\left (7\,A+6\,B\right )\,\left (\mathrm {atan}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-\frac {d\,x}{2}\right )}{4\,d}+\frac {a^2\,\mathrm {atan}\left (\frac {a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (7\,A+6\,B\right )}{4\,\left (\frac {7\,A\,a^2}{4}+\frac {3\,B\,a^2}{2}\right )}\right )\,\left (7\,A+6\,B\right )}{4\,d} \]

[In]

int(cos(c + d*x)^2*(A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2,x)

[Out]

(tan(c/2 + (d*x)/2)*((25*A*a^2)/4 + (13*B*a^2)/2) + tan(c/2 + (d*x)/2)^9*((7*A*a^2)/4 + (3*B*a^2)/2) + tan(c/2
 + (d*x)/2)^7*((49*A*a^2)/6 + 7*B*a^2) + tan(c/2 + (d*x)/2)^3*((79*A*a^2)/6 + 9*B*a^2) + tan(c/2 + (d*x)/2)^5*
((40*A*a^2)/3 + (72*B*a^2)/5))/(d*(5*tan(c/2 + (d*x)/2)^2 + 10*tan(c/2 + (d*x)/2)^4 + 10*tan(c/2 + (d*x)/2)^6
+ 5*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 + 1)) - (a^2*(7*A + 6*B)*(atan(tan(c/2 + (d*x)/2)) - (d*x)/2)
)/(4*d) + (a^2*atan((a^2*tan(c/2 + (d*x)/2)*(7*A + 6*B))/(4*((7*A*a^2)/4 + (3*B*a^2)/2)))*(7*A + 6*B))/(4*d)